Tableau 2. Paramètres géométriques (Å, °)

01 01	1.210 (8)	C20 C21	1 274 (12)
OI-CI	1,210 (8)	C20-C21	1,574 (15)
O2-N1	1,434 (8)	$C_{21} - C_{22}$	1,340 (11)
O2_C10	1,502 (8)	C22—C23	1,359 (15)
O31C31	1,215 (5)	C23—C24	1,401 (11)
O32-N31	1,416 (5)	C31—C32	1,450 (6)
O32C40	1 500 (6)	C31 - C40	1 549 (6)
N1 C11	1,000 (0)	C12 C12	1 276 (6)
NI-CII	1,273 (7)	C32—C33	1,370 (0)
N31-C41	1,275 (5)	C32—C37	1,376 (6)
C1-C2	1,464 (8)	C33-C34	1,385 (6)
C1-C10	1,542 (9)	C34—C35	1,404 (7)
C7_C3	1 386 (9)	C35-C36	1 392 (7)
C2-C3	1,300 ())	C36 C37	1,372 (6)
C2C7	1,370 (10)	C30-C37	1,572 (0)
C3-C4	1,378 (10)	C3/C38	1,322 (6)
C4C5	1,383 (14)	C38—C39	1,558 (8)
C5-C6	1,395 (10)	C38—C40	1,535 (7)
C6C7	1.416 (9)	C40—C42	1.527 (5)
C7C8	1 522 (8)	C41-C42	1 535 (8)
0,-0	1,522 (0)		1,555 (0)
C8-C9	1,369 (12)	C41C49	1,400 (6)
C8C10	1,539 (10)	C42—C43	1,504 (6)
C10-C12	1,522 (7)	C43—C44	1,403 (7)
C11-C12	1,523 (12)	C43—C48	1,395 (6)
C11-C19	1 478 (9)	C44C45	1 401 (7)
C12-C13	1 500 (0)	C45-C46	1 364 (7)
	1,309 (9)	C45_C47	1,209 (7)
CI3-CI4	1,389 (9)	C40	1,566 (7)
C13C18	1,395 (10)	C47C48	1,369 (7)
C14C15	1,382 (11)	C49—C50	1,402 (9)
C15-C16	1,399 (12)	C49C54	1,379 (6)
C16-C17	1.365 (11)	C50-C51	1.379 (7)
C17 - C18	1 374 (11)	C51C52	1 383 (7)
C17=C18	1,377 (11)	C51_C52	1,365 (1)
C19	1,387 (13)	C32-C33	1,508 (10)
C19C24	1,361 (9)	C53—C54	1,382 (7)
NI 02 C10	106 1 (4)	C26 C37 C38	127.6 (4)
NI=02-CI0	100,1 (4)	C30-C37-C38	127,0 (4)
02-NI-CII	108,7 (6)	C3/-C38-C39	109,8 (4)
01-C1-C2	129,5 (6)	C37—C38—C40	102,6 (4)
O1-C1-C10	124,4 (5)	C39—C38—C40	113,4 (3)
C2-C1-C10	106.1 (5)	O32-C40-C31	101,6 (4)
$C_{1} - C_{2} - C_{3}$	128 5 (7)	032 - C40 - C38	105 3 (3)
	108 7 (5)	o32 C40 C42	103.8 (4)
01-02-07	100,7 (5)	032C40C42	103,6 (4)
$C_3 = C_2 = C_1$	122,8 (6)	C31-C40-C38	104,4 (4)
C2-C3-C4	117,0 (8)	C31C40C42	113,9 (3)
C3-C4-C5	121,5 (7)	C38-C40-C42	125,1 (4)
C4-C5-C6	121.8 (7)	N31-C41-C42	113.8 (4)
C5 C6 C7	1165(8)	N31 C41 C49	120 5 (5)
CJ_C0_C/	120 4 (6)		125,5 (4)
C2_C7_C8	120,4 (6)	C42-C41-C49	125,5 (4)
C2C7C8	113,2 (5)	C40C42C41	99,0 (4)
C6—C7—C8	126,3 (7)	C40C42C43	117,1 (3)
C7—C8—C9	109,4 (6)	C41—C42—C43	109,9 (4)
C7C8C10	100.9 (6)	C42-C43-C44	120.2 (4)
C9 - C8 - C10	1123(5)	C42-C43-C48	120 9 (4)
	101 7 (5)	$C_{12} = C_{13} = C_{10}$	119 0 (7)
02-010-01	101,7 (3)		110,0 (7)
02	105,2 (5)	C13 - C14 - C15	121,8 (7)
O2-C10-C12	103,5 (5)	C14—C15—C16	119,1 (7)
C1-C10-C8	104,7 (5)	C15—C16—C17	119,1 (8)
C1-C10-C12	113.8 (5)	C16-C17-C18	122.0 (7)
C8_C10_C12	125.0 (6)	C13_C18_C17	120 0 (7)
NI CII CI2	114 0 (6)	C_{11} C_{10} C_{10} C_{10}	120 8 (4)
NI-CII-CI2	114,9 (0)	CII_CI9_C20	120,8 (0)
N1-C11-C19	120,6 (7)	CII—CI9—C24	120,8 (8)
C12C11C19	124,5 (5)	C20—C19—C24	118,3 (7)
C10-C12-C11	98,2 (5)	C19-C20-C21	119,1 (7)
C10-C12-C13	1175 (6)	$C_{20} - C_{21} - C_{22}$	122 (1)
C11 - C12 - C13	109 3 (6)	C_{21} C_{22} C_{22}	120.0 (8)
$C_{12} C_{12} C_{14}$	102,5 (0)	(1) (1) (1)	110 4 (7)
C12-C13-C14	121,8 (0)	0122-023-024	116,0 (/)
C12—C13—C18	120,2 (6)	C19—C24—C23	121,6 (8)
N31-032-C40	107,4 (3)	C44—C43—C48	118,9 (4)
O32-N31-C41	110,0 (4)	C43-C44-C45	119,0 (4)
O31-C31-C32	130,4 (4)	C44-C45-C46	121.1 (5)
031-031 040	123 2 (4)	C45-C46-C47	1100(5)
C22 C21 C40	106 4 (2)	$C_{45} = C_{40} = C_{47}$	112,7 (J)
C32-C31-C4U	100,4 (3)	040-047-048	120,2 (4)
C31—C32—C33	128,0 (4)	C43—C48—C47	120,9 (4)
C31-C32-C37	110,2 (4)	C41-C49-C50	119,8 (4)
C33—C32—C37	121,7 (4)	C41-C49-C54	121,7 (5)
C32-C33-C34	119.3 (4)	C50-C49-C54	118.4 (4)
C33_C34_C25	118 4 (4)	C49_C50_C51	119 7 (5)
014 025 026	100,4 (4)	C50 C51 C52	121 4 (0)
U34-U33-U36	122.2 (4)	LJU-LJI-LJZ	121,4(0)

C35-C36-C37	117,7 (4)	C51-C52-C53	118,6 (5)
C32-C37-C36	120,8 (4)	C52-C53-C54	120,9 (5)
C32-C37-C38	111,5 (3)	C49—C54—C53	121,0 (6)

L'ensemble des calculs ont été effectués à l'aide d'un ordinateur Digital PDP 11/60 et de l'ensemble de programmes SDP (Frenz, 1985).

Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope, des coordonnées des atomes d'hydrogène, des distances et angles des atomes d'hydrogène, ont été déposées au dépôt d'archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 55786: 11 pp.). On peut en obtenir des copies en s'adressant à: The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre. [Référence de CIF: PA1018]

Références

- Chekti, R. (1989). Thèse de Doctorat d'Etat es Sciences Physiques, Univ. Mohammed V, Rabat, Morac.
- Chekti, R. & Soufiaoui, M. (1991). Bull. Soc. Chim. Fr. pp. 127-138.
- Frenz, B. A. (1985). Enraf-Nonius Structure Determination Package; SDP Users Guide. Version 1985. College Station, Texas 77840, EU, et Enraf-Nonius, Delft, Pays-Bas.
- Johnson, C. K. (1965). ORTEP. Rapport ORNL-3794. Oak Ridge National Laboratory, Tennessee, EU.

Acta Cryst. (1993). C49, 846-848

Structure of Dimethyl 9-Chloro-9.10dihydro-9,10-ethenoanthracene-11,12dicarboxylate

JAMES TROTTER AND VIVIEN C. YEE

Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1

(Received 23 July 1992; accepted 11 November 1992)

Abstract

The two ester groups have different orientations, with C=C-C=O torsion angles of -165.7(3) and $-89.4(4)^{\circ}$ respectively for the groups remote from and adjacent to the Cl substituent. The remote ester group is therefore fully conjugated with the C=C double bond $[\cos^2(\text{angle}) = 0.94]$ and the adjacent group nonconjugated $[\cos^2(angle) = 0]$, presumably as a result of steric effects.

Comment

The structure of the title compound was determined as part of a structural and photochemical study of dibenzo-

0108-2701/93/040846-03\$06.00

© 1993 International Union of Crystallography

Cl C2

C3 C4 C4a C5 C6 C7 C8

C8a C9

C9a C10

C10a

C11

C12

C13 C14 C15 C16 01 02

O3

04

Cl

barrelene diesters (Garcia-Garibay, Scheffer, Trotter & Wireko, 1990; Pokkuluri, Scheffer & Trotter, 1993).

C12 C11

Fig. 1. View of the molecule (50% probability ellipsoids); the chemicalnumbering system is used, except that Cl is bonded to C10.

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (Å²)

$U_{\text{eq}} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$			
x	y	z	U_{eq}
0.7172 (3)	0.2652 (3)	0.4032 (3)	0.050
0.7971 (3)	0.2980 (3)	0.3359 (4)	0.055
0.8798 (3)	0.3658 (3)	0.3915 (4)	0.053
0.8845 (3)	0.4029 (2)	0.5153 (3)	0.046
0.8059 (3)	0.3708 (2)	0.5821 (3)	0.040
0.6386(3)	0.5316 (3)	0.7278 (3)	0.052
0.5197 (4)	0.5525 (3)	0.7008 (4)	0.064
0.4385 (3)	0.4845 (4)	0.6474 (4)	0.065
0.4717 (3)	0.3918 (3)	0.6189 (4)	0.057
0.5899 (3)	0.3693 (2)	0.6450 (3)	0.045
0.6425 (3)	0.2758 (2)	0.6137 (3)	0.046
0.7218 (3)	0.3020 (2)	0.5262 (3)	0.041
0.7959 (2)	0.4013 (2)	0.7180 (3)	0.040
0.6720 (3)	0.4396 (2)	0.7001 (3)	0.042
0.7245 (3)	0.2414 (2)	0.7406 (3)	0.043
0.8045 (3)	0.3065 (2)	0.7973 (3)	0.040
0.7163 (3)	0.1383 (2)	0.7785 (3)	0.047
0.7883 (8)	0.0155 (3)	0.9288 (6)	0.084
0.8929 (3)	0.2950 (2)	0.9235 (3)	0.042
1.0831 (4)	0.2454 (6)	1.0227 (5)	0.078
0.7857 (3)	0.1167 (2)	0.8929 (2)	0.064
0.6558 (2)	0.0815 (2)	0.7087 (3)	0.074
0.9916 (2)	0.2603 (2)	0.9054 (2)	0.053
0.8764 (2)	0.3170 (2)	1.0267 (2)	0.064
0.9033 (1)	0.4871 (1)	0.7941 (1)	0.053

Table 2. Selected bond lengths (Å) and angles (°) with e.s.d.'s in parentheses

C=C C-C (aromatic) C-CO ₂ Me	1.338 (4) 1.364-1.399 (5) 1.487, 1.489 (4)	C=0 C-OMe O-Me	1.189, 1.193 (4) 1.319, 1.322 (4) 1.446, 1.447 (5)
C-C (other)	1.505-1.543 (4)	C—Cl	1.780 (3)
Ring-junction a	ngles		
External	12	6.8-127.9 (3)	
Internal (non-aron	natic) 11	1.2-113.7 (3)	
$C = C - CO_2 Me$	12	7.4, 126.6 (3)	
CI_C_C 11		1.9-113.3 (2)	

Experimental

Crystal data	
C ₂₀ H ₁₅ ClO ₄ $M_r = 354.79$ Monoclinic $P2_1/a$ a = 11.865 (1) Å b = 13.800 (1) Å c = 10.568 (1) Å $\beta = 104.25 (1)^{\circ}$ $V = 1677.1 (1) Å^{3}$ Z = 4 $D_x = 1.405 \text{ Mg m}^{-3}$ $D_m = 1.400 \text{ Mg m}^{-3}$ Density measured by flota- tion	Cu $K\alpha$ radiation $\lambda = 1.54056$ Å Cell parameters from 25 reflections $\theta = 31-46^{\circ}$ $\mu = 2.22 \text{ mm}^{-1}$ T = 294 K Prism $0.4 \times 0.3 \times 0.2 \text{ mm}$ Colourless Crystal source: Yokohama (1987)
Data collection Nonius CAD-4F diffrac- tometer Absorption correction: analytical $T_{min} = 0.49, T_{max} = 0.79$ 3438 measured reflections 3438 independent reflections 2291 observed reflections $[I > 3\sigma(I)]$	$ \theta_{\text{max}} = 75^{\circ} $ $ h = -14 \rightarrow 0 $ $ k = 0 \rightarrow 17 $ $ l = -12 \rightarrow 13 $ 3 standard reflections monitored every 150 reflections intensity variation: none
Refinement Refinement on F Final $R = 0.046$ wR = 0.058 S = 2.2 2291 reflections 287 parameters H-atom coordinates and ther-	$\Delta \rho_{\text{max}} = 0.28 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.23 \text{ e } \text{\AA}^{-3}$ Extinction correction: Coppens Extinction coefficient: 1.08 (4) × 10 ⁴ Atomic scattering factors

mal parameters refined $w = 1/\hat{\sigma}^2(F)$ $(\Delta/\sigma)_{\rm max} = 0.31$ (H-atom parameter)

(Johnson, 1976).

 $28 e Å^{-3}$).23 e Å⁻³ orrection: Copoefficient: 10⁴ Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table

2.3.1)

Data collection: CAD-4. Cell refinement: CAD-4. Data reduction: local programs. Program(s) used to solve structure: Patterson and Fourier. Program(s) used to refine structure: ORFLS (Busing, Martin & Levy, 1962). Molecular graphics: ORTEPII We thank the Natural Sciences and Engineering Research Council of Canada for financial support.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry, together with a packing diagram, have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55830 (26 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: BR1019]

References

Busing, W. R., Martin, K. O. & Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA.

Garcia-Garibay, M., Scheffer, J. R., Trotter, J. & Wireko, F. (1990). Acta Cryst. B46, 79-87, 431-440.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Pokkuluri, P. R., Scheffer, J. R. & Trotter, J. (1993). Acta Cryst. B49, 107-116.

Yokohama, B. C. T. (1987). BSc thesis, Univ. of British Colombia, Vancouver, Canada.